Implementation of the runtime call to the remote process.
Performs the encoding of python arguments into lists of values, sends a message over an MPI channel and waits for a result message, decodes this message and returns.
Abstract base class for all interfaces to legacy codes.
When a subclass is instantiated, a number of subprocesses will be started. These subprocesses are called workers as they implement the interface and do the actual work of the instantiated object.
called before getting data store names (for state model) - should eventually not be necessary
instance.parameter.name
(Can be) called everytime just before a new set is created
instance.parameter.name = newvalue
instance.parameter.name = newvalue
int32 get_working_directory(char * * working_directory);
function get_working_directory(working_directory)
character(len=*) :: working_directory
integer :: get_working_directory
end function
working_directory (string, OUT) –
Is MPI initialized in the code or not. Defaults to True if MPI is available
int32 internal__accept_on_port(char * port_identifier,
int32 * comm_identifier);
function internal__accept_on_port(port_identifier, comm_identifier)
character(len=*) :: port_identifier
integer :: comm_identifier
integer :: internal__accept_on_port
end function
port_identifier (string, IN) –
comm_identifier (int32, OUT) –
int32 internal__activate_communicator(int32 comm_identifier);
function internal__activate_communicator(comm_identifier)
integer :: comm_identifier
integer :: internal__activate_communicator
end function
comm_identifier (int32, IN) –
int32 internal__become_code(int32 number_of_workers, char * modulename,
char * classname);
function internal__become_code(number_of_workers, modulename, classname)
integer :: number_of_workers
character(len=*) :: modulename, classname
integer :: internal__become_code
end function
number_of_workers (int32, IN) –
modulename (string, IN) –
classname (string, IN) –
int32 internal__connect_to_port(char * port_identifier,
int32 * comm_identifier);
function internal__connect_to_port(port_identifier, comm_identifier)
character(len=*) :: port_identifier
integer :: comm_identifier
integer :: internal__connect_to_port
end function
port_identifier (string, IN) –
comm_identifier (int32, OUT) –
Gets the message polling interval for MPI header messages, in microseconds
int32 internal__get_message_polling_interval(int32 * polling_interval);
function internal__get_message_polling_interval(polling_interval)
integer :: polling_interval
integer :: internal__get_message_polling_interval
end function
polling_interval (int32, OUT) –
int32 internal__open_port(char * * port_identifier);
function internal__open_port(port_identifier)
character(len=*) :: port_identifier
integer :: internal__open_port
end function
port_identifier (string, OUT) –
int32 internal__set_message_polling_interval(int32 polling_interval);
function internal__set_message_polling_interval(polling_interval)
integer :: polling_interval
integer :: internal__set_message_polling_interval
end function
polling_interval (int32, IN) –
Redirect the output of the code to null, standard streams or file
Do not stop a worker, re-use an existing one
int32 set_working_directory(char * working_directory);
function set_working_directory(working_directory)
character(len=*) :: working_directory
integer :: set_working_directory
end function
working_directory (string, IN) –
Specification of a legacy function. Describes the name, result type and parameters of a legacy function.
The legacy functions are implemented by legacy codes. The implementation of legacy functions is in C/C++ or Fortran. To interact with these functions a specification of the legacy function is needed. This specification is used to determine how to encode and decode the parameters and results of the function. Objects of this class describe the specification of one function.
>>> specification = LegacyFunctionSpecification()
>>> specification.name = "test"
>>> specification.addParameter("one", dtype="int32", direction = specification.IN)
>>> specification.addParameter("two", dtype="float64", direction = specification.OUT)
>>> specification.result_type = "int32"
>>> print specification
function: int test(int one)
output: double two, int __result
Used to specify that a parameter is used as an input parameter, passed by value
Used to specify that a parameter is used as an input and an outpur parameter, passed by reference
Used to specify that a parameter is used as the length parameter for the other parameters
Used to specify that a parameter is used as an output parameter, passed by reference
Extend the specification with a new parameter.
The sequence of calls to addParameter is important. The first call will be interpreted as the first argument, the second call as the second argument etc.
name – Name of the parameter, used in documentation and function generation
dtype – Datatype specification string
direction – Direction of the argument, can be IN, OUT or INOUT
description – Description of the argument, for documenting purposes
default – An optional default value for the parameter
Base class for codes having a python implementation
implementation_factory – Class of the python implementation
Decorator for legacy functions.
The decorated function cannot have any arguments. This
means the decorated function must not have a self
argument.
The decorated function must return a LegacyFunctionSpecification.
>>> class LegacyExample(object):
... @legacy_function
... def evolve():
... specification = LegacyFunctionSpecification()
... return specification
...
>>> x = LegacyExample()
>>> x.evolve.specification
<amuse.rfi.core.LegacyFunctionSpecification object at 0x...>
>>> LegacyExample.evolve
<amuse.rfi.core.legacy_function object at 0x...>
>>> x.evolve
<amuse.rfi.core.CodeFunction object at 0x...>
specification_function – The function to be decorated
Returns the specification for the call.
Stop the workers of all instantiated interfaces.
All instantiated interfaces will become unstable after this call!